创建或修改目录:/www/wwwroot/104.219.215.234/data 失败!
韩国全色网 博士生导师简介——王克剑 - 失少女系列

韩国全色网 博士生导师简介——王克剑

失少女系列

栏目分类
你的位置:失少女系列 > 成人新区 > 韩国全色网 博士生导师简介——王克剑
韩国全色网 博士生导师简介——王克剑
发布日期:2024-11-05 06:22    点击次数:178
韩国全色网

博士生导师简介 韩国全色网

 

王克剑

专科学科:作物种质资源学

商讨标的:作物种质资源立异与摆布

王克剑,商讨员,博士生导师,1983年12月生,江苏盐城东谈主;国度了得后生基金取得者,陈嘉庚后生科学奖取得者(农业限制初度);现为水稻生物学国度要点执行室常务副主任,国度水稻产业时候体系岗亭科学家,农业农村部“农业科研了得东谈主才”,中国农科院科技立异工程团队首席科学家,中国农科院农科英才领军A类东谈主才。

2004年于扬州大学获农学学士学位,2009年于中国科学院遗传与发育生物学商讨所获理学博士学位并留所责任,先后任助理商讨员、副商讨员。2013年8月至中国农业科学院/中国水稻商讨所任课题组长,主要开展生物育种前沿时候研发责任,摆布基因组剪辑时候生效取得杂交稻克隆种子,结束杂交稻无交融生殖“从0到1”的松弛。先后在Nature Biotechnology、Molecular Plant、Plant Cell等SCI期刊上发表论文50余篇;获国度发明专利10余项。现任中国作物学会理事、中国遗传学会基因组剪辑分会委员;担任JIPB、aBIOTECH、BMC Plant Biology、Genes、Frontiers in Genome Editing、作物学报等盛名期刊编委。

主要商讨标的

1.基因组剪辑时候研发及应用。主要开展基因组剪辑等精确育种时候拓荒,以及优异种质资源立异商讨。

2.无交融生殖固定杂种上风商讨。针对杂种上风无法遗传、杂交作物无法留种的问题,主见无交融生殖分子机制,建设杂种上风固定时候体系,结束杂交品种的自繁种(商讨效果入选 2020中国农业科学十猛涌现;本团队推选的“植物无交融生殖的生物学基础是什么?”被中国科协评比为2020年度10个裂缝科常识题)。

3.生物大数据挖掘及器具拓荒。针对水稻生物学大数据进行深度挖掘与分析,拓荒有关器具及应用平台。

比年发表的主要论文(*通信作家,#共合并作)

1.Xu Y#., Meng X#., Wang J, Qin B, Wang K., Li J, Wang C*, Yu H*. (2020) ScCas9 recognizes NNG protospacer adjacent motif in genome editing of rice. Science China Life Sciences doi.org/10.1007/s11427-019-1630-2

2.Wang C., Liu Q., Shen Y., Hua Y., Wang J., Lin J., Wu M., Sun T., Cheng Z., Mercier R., Wang K*. (2019) Clonal seeds from hybrid rice by simultaneous genome engineering of meiosis and fertilization genes. Nature Biotechnology, 37(3):283-287. (封面著作,CCTV新闻: )

3.Wang K. (2019). Fixation of hybrid vigor in rice: synthetic apomixis generated by genome editing. aBIOTECH 1, 15-20.

4.Wang C., Wang K*. (2019) Rapid Screening of CRISPR/Cas9-Induced Mutants Using the ACT-PCR Method. vol 1917. Humana Press, New York, NY.

5.Wang J#., Wang C#., Wang K*. (2019) Generation of marker-free transgenic rice using CRISPR/Cas9 system controlled by floral specific promoters. Journal of Genetics and Genomics, 46(1): 61-64.

6.Ren J#., Hu X#., Wang K., Wang C. (2019) Development and application of CRISPR/Cas system in rice. Rice Science, 26(2):69-76.

7.Hu X#., Meng X#., Li J., Wang K*., and Yu H*. (2019) Improving the efficiency of the CRISPR-Cas12a system with tRNA-crRNA arrays. The Crop Journal. https://doi.org/10.1016/j.cj.2019.06.007

8.Wang J#., Meng X#., Hu X#., Sun T., Li J., Wang K*., Yu H*. (2019) xCas9 expands the scope of genome editing with reduced efficiency in rice. Plant Biotechnology Journal, 17(4):709-711.

9.Liu Q#., Wang C#., Jiao X., Zhang H., Song L., Li Y., Gao C., and Wang K*. (2019) Hi-TOM: a platform for high-throughput tracking of mutations induced by CRISPR/Cas systems. Science China Life Sciences, 62(1):1-7. (封面著作)

10.Li S#., Shen L#., Hu P., Liu Q., Zhu X., Qian Q., Wang K*., and Wang Y*. (2019) Developing disease-resistant thermosensitive male sterile rice by multiplex gene editing. Journal of Integrative Plant Biology, 61(12), 1201-1205.

11.Hu, X#., Meng, X#., Liu, Q., Li, J*., and Wang K*. (2018) Increasing the efficiency of CRISPR-Cas9-VQR precise genome editing in rice. Plant Biotechnology Journal, 16: 292-297. (其中第一作家胡熙璕为农业推论硕士)

12.Meng, X#., Hu, X#., Liu, Q., Song, X., Gao, C., Li, J*., and Wang, K*. (2018) Robust genome editing of CRISPR-Cas9 at NAG PAMs in rice. Science China Life Sciences, v.61(01):124-127. (其中第一作家胡熙璕为农业推论硕士)

13.Shen, L#., Wang, C#., Fu, Y., Wang, J., Liu, Q., Zhang, X., Yan, C*., Qian, Q*., and Wang, K*. (2018) QTL editing confers opposing yield performance in different rice varieties. Journal of Integrative Plant Biology, 61: 122-125. (封面著作、年度最好论文)

14.Zhan N., Wang C., Chen L., Yang H., Feng J., Gong X., Ren B., Wu R., Mu J., Li Y., Liu Z., Zhou Y., Peng J., Wang K., Huang X., Xiao S., Zuo J. (2018) S-Nitrosy lation targets GSNO reductase for selective autophagy during hypoxia responses in plants. Molecular Cell, 71(1):142-154.

15.Hua, Y#., Wang, C#., Huang, J#., and Wang, K*. (2017) A simple and efficient method for CRISPR/Cas9 mutant screening. Journal of Genetics and Genomics, 44:213.

16.Hu, X#., Wang, C#., Liu, Q., Fu, Y., and Wang, K*. (2017) Targeted mutagenesis in rice using CRISPR-Cpf1 system. Journal of Genetics and Genomics, 44:71-73. (其中第一作家胡熙璕为农业推论硕士)

17.Shen, L#., Hua, Y#., Fu, Y#., Li, J#., Liu, Q., Jiao, X., Xin, G., Wang, J., Wang, X., Yan, C*., and Wang, K*. (2017) Rapid generation of genetic diversity by multiplex CRISPR/Cas9 genome editing in rice. Science China Life Sciences, 5:506-515. (基因剪辑专刊)

18.Zhang P., Zhang Y., Sun L., Sinumporn S., Yang Z., Sun B., Xuan D., Li Z., Yu P., Wu W., Wang K., Cao L., Cheng S. (2017) The rice AAA-ATPase OsFIGNL1 is essential for male meiosis. Frontiers in Plant Science, 8:0-1639.

19.Hu, X#., Wang, C#., Fu, Y#., Liu, Q., Jiao, X., and Wang, K*. (2016) Expanding the range of CRISPR/Cas9 genome editing in rice. Molecular Plant, 9:943-945. (其中第一作家胡熙璕为农业推论硕士)

20.Wang, K*., Wang, C., Liu, Q., Fu, Y. (2015) Increasing the genetic recombination frequency by partial loss of function of the synaptonemal complex in rice. Molecular Plant, 8:1295-1298.

21.Wang, C#., Shen, L#., Fu, Y., Yan, C., Wang, K*. (2015) A simple CRISPR/Cas9 system for multiplex genome editing in rice. Journal of Genetics and Genomics, 42:703-706.

22.Che, L#., Wang, K#., Tang, D., Liu, Q., Chen, X., Li, Y., Hu, Q., Shen, Y., Yu, H., Gu, M., et al. (2014) OsHUS1 facilitates accurate meiotic recombination in rice. PLoS Genetics, 10:e1004405.

23.Wu, X#., Tang, D#., Li, M#., Wang, K., Cheng, Z*. (2013) Loose plant architecture 1, an INDETERMINATE domain protein involved in shoot gravitropism, regulates plant architecture in rice. Plant Physiology, 161:317-329.

24.Ji, J#., Tang D#., Wang, M., Li, Y., Zhang L, Wang, K., Li, M., and Cheng, Z*. (2013) MRE11 is required for homologous synapsis and DSB processing in rice meiosis. Chromosoma, 122:363-376.

25.Luo, Q#., Tang, D#., Wang, M., Luo, W., Zhang, L., Qin, B., Shen, Y., Wang, K., Li, Y., Cheng, Z*. (2013) The role of OsMSH5 in crossover formation during rice meiosis. Molecular Plant, 6:729-742.

麻豆 艾鲤

26.Wang, K#., Wang, M#., Tang, D#., Shen, Y., Miao, C., Hu, Q., Lu, T., Cheng, Z*. (2012) The role of HEI10 in crossover formation in rice. PLoS Genetics, 8:e1002809.

27.Ji, J#., Tang, D#., Wang, K., Wang, M., Che, L., Li, M., Cheng, Z*. (2012) The role of OsCOM1 in homologous chromosome synapsis and recombination in rice meiosis. The Plant Journal, 72:18-30.

28.Hong, L#., Tang, D#., Zhu, K#., Wang, K., Li, M., and Cheng, Z*. (2012) Somatic and reproductive cell development in rice anther is regulated by a putative glutaredoxin. The Plant Cell, 24:577-588.

29.Wang, M#., Tang, D#., Luo, Q., Jin, Y., Shen, Y., Wang, K., Cheng, Z*. (2012) BRK1, a Bub1-related kinase, is essential for generating proper tension between homologous kinetochores at metaphase I of rice meiosis. The Plant Cell, 24:4961-4973.

30.Shen, Y#., Tang, D#., Wang, K., Wang, M., Huang, J., Luo, W., Luo, Q., Hong, L., Li, M., Cheng, Z*. (2012) The role of ZIP4 in homologous chromosome synapsis and crossover formation in rice meiosis. Journal of Cell Science, 125:2581-2591.

31.Hong, L#., Tang, D#., Shen, Y., Hu, Q., Wang, K., Li, M., Lu, T., and Cheng, Z*. (2012) MIL2 (MICROSPORELESS2) regulates early cell differentiation in the rice anther. New Phytologist, 196:402-413.

32.Hong, L., Qian, Q., Tang, D., Wang, K., Li, M., and Cheng, Z*. (2012) A mutation in the rice chalcone isomerase gene causes the golden hull and internode 1 phenotype. Planta, 236:141-151.

33.Wang, K#., Wang, M#., Tang, D#., Shen, Y., Qin, B., Li, M., and Cheng, Z*. (2011) PAIR3, an axis-associated protein, is essential for the recruitment of recombination elements onto meiotic chromosomes in rice. Molecular Biology of the Cell, 22:12-19.

34.Che, L#., Tang, D#., Wang, K., Wang, M., Zhu, K., Yu, H., Gu, M., and Cheng, Z*. (2011) OsAM1 is required for leptotene-zygotene transition in rice. Cell Research, 21:654-665.

35.Shao, T#., Tang, D#., Wang, K., Wang, M., Che, L., Qin, B., Yu, H., Li, M., Gu, M., and Cheng, Z*. (2011) OsREC8 is essential for chromatid cohesion and metaphase I monopolar orientation in rice meiosis. Plant Physiology, 156:1386-1396.

36.Wang, M., Tang, D., Wang, K., Shen, Y., Qin, B., Miao, C., Li, M., and Cheng, Z*. (2011) OsSGO1 maintains synaptonemal complex stabilization in addition to protecting centromeric cohesion during rice meiosis. The Plant Journal, 67:583-594.

37.Li, M., Tang, D., Wang, K., Wu, X., Lu, L., Yu, H., Gu, M., Yan, C*., and Cheng, Z*. (2011) Mutations in the F-box gene LARGER PANICLE improve the panicle architecture and enhance the grain yield in rice. Plant Biotechnology Journal, 9:1002-1013.

38.Qin, B., Tang, D., Huang, J., Li, M., Wu, X., Lu, L., Wang, K., Yu, H., Chen, J., Gu, M., and Cheng, Z*. (2011) Rice OsGL1-1 is involved in leaf cuticular wax and cuticle membrane. Molecular Plant, 4:985-995.

39.Wang, K#., Tang, D#., Hong, L., Xu, W., Huang, J., Li, M., Gu, M., Xue, Y*., Cheng, Z*. (2010) DEP and AFO regulate reproductive habit in rice. PLoS Genetics, 6:e1000818. (封面著作)

40.Wang, M., Wang, K., Tang, D., Wei, C., Li, M., Shen, Y., Chi, Z., Gu, M., Cheng, Z*. (2010) The central element protein ZEP1 of the synaptonemal complex regulates the number of crossovers during meiosis in rice. The Plant Cell, 22:417-430.

41.Yu, H#., Wang, M#., Tang, D., Wang, K., Chen, F., Gong, Z., Gu, M.*, and Cheng, Z*. (2010) OsSPO11-1 is essential for both homologous chromosome pairing and crossover formation in rice. Chromosoma, 119:625-636.

42.Wang, K., Tang, D., Wang, M., Lu J., Yu, H., Liu, J., Qian, B., Gong, Z., Wang, X., Chen, J., Gu, M., and Cheng, Z*. (2009) MER3 is required for normal meiotic crossover formation, but not for presynaptic alignment in rice. Journal of Cell Science, 122:2055-2063.

通信地址:浙江省富阳市水稻所路28号 中国水稻商讨所 311400

电  话:0571-63370202

电子邮箱:wangkejian@caas.cn



上一篇:麻豆 艾鲤 贵阳奇迹时刻学院2024年招生简章(含专科东说念主数、录取规定)
下一篇:indian sex5 我院杨喜浑厚论文被《长江流域资源与环境》刊发
创建或修改目录:/www/wwwroot/104.219.215.234/data 失败!
JzEngine Create File False